Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Jian-Bing Liu, Hong Dai, Li-Chun Li, Wei-Feng Tao and Jian-Xin Fang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: liu_jianbing@sina.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.042$
$w R$ factor $=0.099$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[(Z)-3-Ferrocenyl-1-(4-fluorophenyl)-1-methoxy-prop-2-en-2-yl]-1H-1,2,4-triazole

Figure 1
A view of (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2
A view (Spek, 2003) of a centrosymmtric dimer of (I). Dashed lines indicate weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions.

In the crystal structure of (I), weak intermolecular C$\mathrm{H} \cdots \mathrm{F}$ interactions $\left[\mathrm{H} \cdots \mathrm{F}^{\mathrm{i}}=2.511 \AA, \mathrm{C} \cdots \mathrm{F}^{\mathrm{i}}=3.386\right.$ (3) \AA and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~F}^{\mathrm{i}}=156.8(2)^{\circ}$; symmetry code: (i) $1-x, 1-y$, $2-z]$ link the molecules into centrosymmetric dimers (Fig. 2).

Experimental

1-(4-Fluorophenyl)-3-ferrocenyl-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one ($4.2 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in methanol $(15 \mathrm{ml})$ and water $(20 \mathrm{ml})$. Sodium borohydride $(0.076 \mathrm{~g}, 20 \mathrm{mmol})$ was then added in six batches below 283 K . The mixture was stirred for 24 h at room temperature, then adjusted to pH 6 using $10 \%(w / w)$ sulfuric acid. The solution was extracted with diethyl ether $(3 \times 20 \mathrm{ml})$, and the combined organic layer was washed with water $(3 \times 20 \mathrm{ml})$ and then dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was recrystallized from petroleum ether-ethyl acetate $(4: 1 \mathrm{v} / \mathrm{v})$ to give yellow crystals of (I) (yield 56%).

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{3} \mathrm{O}\right)\right]$
$Z=2$
$M_{r}=417.26$
Triclinic, $P \overline{1}$
$a=10.116$ (2) A
$b=11.045$ (3) A
$c=11.239$ (3) \AA
$\alpha=100.554$ (4) ${ }^{\circ}$
$\beta=110.267$ (4) ${ }^{\circ}$
$\gamma=115.736$ (4)
$V=975.0(4) \AA^{3}$
$D_{x}=1.421 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1579 reflections
$\theta=2.2-22.8^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.821, T_{\text {max }}=0.866$
4998 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.099$
$S=1.02$
3417 reflections
254 parameters

3417 independent reflections
2445 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 10$
$k=-7 \rightarrow 13$
$l=-12 \rightarrow 13$

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0447 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.004$
$\Delta \rho_{\max }=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 20$	$1.319(4)$	$\mathrm{O} 1-\mathrm{C} 22$	$1.428(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.360(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.321(4)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.440(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.510(4)$
$\mathrm{N} 2-\mathrm{C} 21$	$1.317(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.513(4)$
$\mathrm{N} 3-\mathrm{C} 20$	$1.311(4)$	$\mathrm{C} 14-\mathrm{C} 19$	$1.380(4)$
$\mathrm{N} 3-\mathrm{C} 21$	$1.338(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.383(4)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.417(3)$		
			$121.1(2)$
$\mathrm{C} 20-\mathrm{N} 1-\mathrm{N} 2$	$108.8(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 1$	$126.8(3)$
$\mathrm{C} 20-\mathrm{N} 1-\mathrm{C} 12$	$129.2(3)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$112.2(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 12$	$121.7(2)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$105.2(2)$
$\mathrm{C} 21-\mathrm{N} 2-\mathrm{N} 1$	$101.5(3)$	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 12$	$112.6(2)$
$\mathrm{C} 20-\mathrm{N} 3-\mathrm{C} 21$	$101.3(3)$	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 14$	$113.9(2)$
$\mathrm{C} 13-\mathrm{O} 1-\mathrm{C} 22$	$113.6(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$112.2(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$130.9(3)$	$\mathrm{N} 3-\mathrm{C} 20-\mathrm{N} 1$	$116.2(3)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 11$	$122.5(3)$	$\mathrm{N} 2-\mathrm{C} 21-\mathrm{N} 3$	
			$-175.1(3)$
C20-N1-N2-C21	$-0.2(3)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21$	

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$, or $0.96 \AA$ for methyl H , and included in the refinement using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant Nos. 29872022 and 20172030) and by the Key Project of the Chinese Ministry of Education (KPCME) (grant No. 105046).

metal-organic papers

References

Biot, C., Delhaes, L., Lucien, A. M., Mortuaire, M., Camus, D., Divd, S. \& Brocard, S. S. (2000). Eur. J. Med. Chem. 35, 707-714.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chu, C. H., Sun, X. W., Sun, L., Zhang, Z. Y., Li, Z. C. \& Liao, R. A. (1999). J. Chin. Chem. Soc. 46, 229-235.
Czollner, L., Sxilagli, G. \& Janaky, J. (1990). Arch. Pharm. (Weinheim), 323, 225-229.

Dombrowsk, K. E., Baldwin, W. \& Sheats, J. E. (1986). J. Organomet. Chem. 302, 281-306.
Fang, J. X., Jin, Z., Liu, Z. \& Liu, W. (2003). J. Organomet. Chem. 674, 1-9 Huang, R. Q. \& Wang, Q. M. (2001). J. Organomet. Chem. 94, 637-639.
Molina, P., Tarraga, A., Lopez, J. L. \& Martinez, J. C. (1999). J. Organomet. Chem. 584, 147-158.
Motohashi, N., Meyer, R., Gollapudi, S. R. \& Bhattiprolu, K. R. (1990). J. Organomet. Chem. 398, 205-217.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Yeav, R. A. (1969). Toxicol. Appl. Pharmacol. 15, 666-673.

